
Scheduling Latency-Sensitive Applications in Edge Computing

Vincenzo Scoca 1, Atakan Aral2, Ivona Brandic 2, Rocco De Nicola 1 and Rafael Brundo Uriarte 1

1IMT School for Advanced Studies Lucca, Italy
2 Vienna University of Technology, Austria

{name.surname}@imtlucca.it, {name.surname}@tuwien.ac.at

Keywords: Edge Computing, Scheduling, Latency-Sensitive Services, Live Video Streaming, Resource Selection

Abstract: Edge computing is an emerging technology that aims to include latency-sensitive and data-intensive applica-
tions such as mobile or IoT services, into the cloud ecosystem by placing computational resources at the edge
of the network. Close proximity to producers and consumers of data brings significant benefits in latency and
bandwidth. However, edge resources are, by definition, limited in comparison to cloud counterparts, thus, a
trade-off exists between deploying a service closest to its users and avoiding resource overload. We propose
a score-based edge service scheduling algorithm that evaluates both network and computational capabilities
of edge nodes and outputs the maximum scoring mapping between services and resources. Our extensive
simulation based on a live video streaming service, demonstrates significant improvements in both network
delay and service time. Additionally, we compare edge computing technology with the state-of-the-art cloud
computing and content delivery network solutions within the context of latency-sensitive and data-intensive
applications. Our results show that edge computing enhanced with suggested scheduling algorithm is a viable
solution for achieving high quality of service and responsivity in deploying such applications.

1 INTRODUCTION

The enhancement of smart devices and network
technologies has enabled new internet-based services
with strict end-to-end latency requirements (Bilal and
Erbad, 2017), for example, 360 degrees video and
on-line gaming. Edge Computing is a promising so-
lution for the provision of latency-sensitive applica-
tions since it offers a set of enabling technologies that
moves both computation and storage capabilities (i.e.,
micro cloud data centers) to the edge of the network
(Shi et al., 2016). This change allows deployment of
services close to end users, which reduces their re-
sponse time.

To effectively exploit the advantages of Edge in-
frastructure, service instances should be scheduled on
the node which better fits service requirements, taking
into account contextual knowledge, i.e., user, appli-
cation and network information (Wang et al., 2017).
Indeed, defining optimal placement not only allows
to maximize user experience by reducing end-to-end
latency, but it also optimizes network traffic by re-
ducing bandwidth consumption and related costs, and
improves energy efficiency by reducing the need to
offload tasks to the cloud which incurs higher energy
consumption compared to micro data centers.

Currently, few existing scheduling solutions for
Edge Computing are related to Internet-of-Things,
mostly focusing on the response time between ser-
vice components rather than the optimization of user-
related metrics (end-to-end service response time)
(Skarlat et al., 2017). Scheduling approaches de-
vised for similar paradigms, in particular cloud and
content delivery networks (CDNs) are characterized
by infrastructure limitations which make them un-
fit to meet the requirements of this type of latency-
sensitive services. Specifically, cloud solutions are
characterised by large distances between cloud data
centers and final users, incurring high network delay
that considerably degrades the service quality experi-
enced by end users. Moreover, due to high amount
of traffic generated by this kind of services, there is a
considerable risk of network congestion as well as a
bandwidth waste (Wang et al., 2017). In the case of
CDNs, any computational tasks must be carried out in
the cloud, and a distributed network of cache servers,
which is located in close proximity to users, is only
used for disseminating output data (e.g. web objects,
rich media, etc.). However, servers are still several
hops away from final users and they need to process
requests on cloud servers and therefore do not consid-
erably reduce the network delay when offloaded task

is computationally heavy (Bilal and Erbad, 2017).
In this paper, we propose a novel score-based

edge scheduling framework specifically designed for
latency-sensitive services in Edge. The proposed
technique is latency, bandwidth, and resource aware.
It schedules each service instance on the VM type
whose computing and network capabilities can op-
timize service response time experienced by end
users. First, eligibility of available VM types on
edge nodes are evaluated for hosting given service
based on VM network and resource capabilities, and
then such services are scheduled in the most suit-
able VMs according to eligibility scores, guarantee-
ing optimal service quality. We validate our ap-
proach based on a live video streaming service and
evaluate how different deployment solutions, namely
Cloud, CDN and Edge, affect user response time in
an latency-sensitive and data-intensive scenario. The
obtained results show that edge-based solutions effec-
tively improve user response time, highlighting the
need of a suitable scheduling algorithm to obtain op-
timized results. Moreover, we compare the perfor-
mance of our approach with (Duong et al., 2012),
a well-known latency-sensitive scheduling algorithm
for clouds, which aims to minimize the overall de-
lay experienced by end users by reducing the users’
request waiting time, without explicitly considering
network latency. The results show that edge schedul-
ing algorithms must take also network latency into
account to minimize the overall service delay expe-
rienced by end users.

Overall, the main contributions of this paper are:
(i) a novel Edge scheduling framework for latency-
sensitive services; (ii) the performance evaluation of
different deployment solutions, namely cloud, CDN
and Edge, for latency-sensitive services, which shows
the advantages of Edge computing in this context; and
(iii) the evaluation of the proposed framework in com-
parison to a solution for latency-sensitive services in
clouds, which shows the benefits of using an algo-
rithm specifically devised for this architecture.

The rest of this paper is organised a follows. In the
next section, we present the related works; in Sec.3
we provide a motivating example discussing the ben-
efit of edge-based deployment approach for latency
sensitive applications such as a live video streaming
service; in Sec.4 we present the scheduling approach
we devised; in Sec.5 we describe the experimental
setup used for the evaluation of our approach together
with the results we obtained, whereas conclusions and
future works are reported in Sec.6.

2 RELATED WORKS

Effectiveness of edge technologies has already
been proved in many use cases, as reported by Wang
et al. in (Wang et al., 2017), however there are still
open research challenges to be tackled such as ser-
vice scheduling on edge nodes. Recent works such as
(Zhao et al., 2015; Guo et al., 2016; Mao et al., 2016)
faces edge computation offloading problem, that is the
decision of scheduling a task on mobile device or lo-
cal/internet cloud. Nevertheless, these works do not
take into account the actual service scheduling be-
tween edge nodes.

In the area of Fog Computing, in (Skarlat et al.,
2017), authors defined a scheduling approach for the
placement of service modules on fog nodes, focus-
ing only on the optimization of response time among
components, without taking into account the end-to-
end service time. Aazam et al. in (Aazam and Huh,
2015), instead, defined a resource estimation and pric-
ing model for IoT, that estimates the amount of re-
sources to be allocated for a given service, again with-
out providing an solution for the selection of a node
where to allocate the service.

Scheduling of latency sensitivity services, instead,
has been widely studied in Cloud. For example,
VM placement solutions for distributed clouds have
been developed in (Papagianni et al., 2013; Aral and
Ovatman, 2016). These approaches seek for optimal
VM placement on physical nodes which minimizes
the network latency among them. However, these
mapping methodologies rely only on service require-
ments and physical infrastructure knowledge with-
out considering user-related information, such as geo-
localization, which is a critical feature for the schedul-
ing process in edge. Hence, they are not directly
adaptable to our problem. In the context of single
cloud providers, authors in (Piao and Yan, 2010; Zeng
et al., 2014) developed service component placement
methodologies that, similarly to the distributed sce-
nario described before, optimize the service place-
ment among servers in a single data center minimiz-
ing the transfer time between service components.
Therefore, also these approaches do not take into ac-
count users information which would make their ap-
plication suitable for service scheduling in edge.

Authors in (Duong et al., 2012), however, in-
tegrated user information in the service allocation
methodology they proposed. Indeed, they defined a
provisioning algorithm based on queuing theory to
identify the number of VMs to be deployed in or-
der to minimize the user waiting time. However, this
approach, intended for IaaS clouds, only define the
number of VMs needed to cope with the incoming

load and is still missing VM placement policies which
would lead to sub-optimal results in the case of edge
computing.

3 MOTIVATING EXAMPLE

Live video streaming services, allow to stream a
video recorded by any device equipped with camera
in nearly real-time to a large number of mobile or
desktop audience globally. Currently, due to the ad-
vances in networking technologies these services are
becoming very popular and attracting the attention of
big companies such as Twitter, Facebook and Google
who developed their own live video streaming ser-
vices. To better understand what are the challenges
underlying this kind of services, let us first quickly
describe the live streaming service workflow depicted
in Fig. 1.

The first step is the encoding of input video in a
high quality stream, using either local camera encoder
or an external one installed in remote server. After-
wards, the encoded video is given as an input to the
transcoding operations which create streams in differ-
ent resolutions and bitrates on the fly. This process
is fundamental in order to reach a very broad audi-
ence. Indeed, creating new streams at various bitrates
and resolution allows an adaptive distribution of the
video content according to the device used to access
the stream and bandwidth condition, guaranteeing a
high quality of experience for many users. The mul-
tiple streams in output from the transcoding process
are then processed by a media server responsible of
packaging the video streams, according to the spec-
ifications (e.g., chunk length, codecs and container)
defined by the streaming protocols (e.g., HLS, HDS,
etc.) supported. The video chunks are then ready to
be directly delivered to end users according to their
location, bandwidth and streaming protocol imple-
mented by the media player they use, or first dissemi-
nated on multiple servers closer to them.

Although the service workflow may look quite
simple, all the steps described are characterized by
some critical issues that will affect the overall user en-
gagement to the video stream. Factors impacting user
engagement, as reported in (Dobrian et al., 2011), are
the join time (i.e., the duration from the player ini-
tiates a connection to a video server till the time the
play starts), the buffering ratio (i.e., percentage of the
total streaming session time spent in buffering) and
the video quality. All these metrics are directly af-
fected by the transcoding and distribution steps of the
streaming workflow, which strictly rely on the service
deployment solution adopted. Currently, streaming

Figure 1: Live video streaming workflow

service providers adopt cloud based deployment so-
lutions in order to face the high and quickly changing
processing resource and bandwidth requirements. In
the simplest cloud based architecture, as depicted in
Fig.3, the incoming video stream is usually encoded
in a high quality video locally and then uploaded to
a cloud server for transcoding and packaging opera-
tions.

In this way, exploiting the elasticity provided by
the cloud infrastructure, it is possible to dynamically
manage the resource needs according to the current
service load. However, this deployment solution is
not the best approach to maintain a low buffering ratio
and a high video quality. Whereas extensive compu-
tation required for the transcoding operations can be
managed according to the current needs, the best ef-
fort delivery of the packets from a cloud server to fi-
nal users can still incur downgraded video experience.
Indeed, the path between users and the stream origin
server in the cloud usually involves multiple hops and
then the probability of experiencing link congestion
along the route is high. Congested links incur a low
throughput and high packet loss and delay jitter, intro-
ducing high network delay and discontinuous packet
delivery rate, causing a drop in the video quality.

To face these network issues, the most widely
adopted solution currently is content delivery net-
works (CDNs) for the distribution of streaming con-
tents. In this scenario, as depicted in Fig.4, all the
transcoding and packaging operations are still exe-
cuted on the cloud, but the media contents are then
distributed over a network of cache servers located
closer to end users. In this way, user requests are au-
tomatically directed to the closest cache node, which
forward to the cloud only the requests whose con-
tent is not already available on that node. Therefore,
an improved bandwidth consumption is provided and
then the risk of network congestion is lower, reducing
the buffering ratio while increasing the video quality
experienced.

Nevertheless, CDNs have originally been de-
signed for the distribution of static contents and
adopting them for the distribution of dynamic con-

Figure 2: Edge-based platform for live video streaming ser-
vices

tents as live video streams is not straightforward. The
main issues arise from the volume and requirements
of live video streaming users. Indeed video content
accounts for 70% of whole Internet traffic (Bilal and
Erbad, 2017), which is much higher compared to the
traffic generated by other web-applications. More-
over users demand high quality video, instant start
up times and low buffering ratio, requirements which
bring to high demand of bandwidth, whereas CDN
aims to minimize costs and they may not meet these
high-demanding requirements. Finally, a CDN-based
distribution can easily become too costly as the num-
ber of streams and viewers increases, due to the high
bandwidth costs.

To face the issues of the approaches described
above, the set of innovative technologies introduced
by the Edge paradigm may provide the solution
needed. Indeed, edge solutions can be used to
tackle various challenges currently faced by media
and video streaming applications in order to improve
the service quality experienced by end users. A pos-
sible edge-based video streaming platform is depicted
in Fig.2.

With edge computing, incoming video is first en-
coded in high quality, either with the camera encoder
or with an encoder installed in the closest edge node,
and then distributed over a set of edge nodes respon-
sible for both video transcoding and content distribu-
tion. In this way, video will be encoded on the fly and
delivered to the viewer, removing all the delay intro-
duced by fetching video content from central cloud.
We also assume that there are different transcoder
configurations related to different device type (e.g.,
smartphone, tablet, IPTV, etc.) that will transcode the
input video in multiple streams suitable for a given
specific device. Therefore, even though edge nodes
cannot provide the same computing power of cloud
nodes, distribution of individual encoders, each for
a specific type of device, makes computational re-

quirements of transcoding operation suitable for edge
nodes.

Overall, the main advantages of this approach are
the reduction of end-to-end latency and bandwidth
consumption. Indeed, strict proximity of end users to
the nodes delivering video content reduces delay due
to both a shorter physical distance and a reduced prob-
ability to face network congestion, since the number
of links and hops along the route is smaller compared
to the cloud- and CDN-based approaches. Moreover,
bringing transcoding process to the edge further con-
tribute to lower delay since video is processed and
packaged on that node without the need of fetching
missing content from an origin server in a cloud data
center.

4 A SCHEDULING FRAMEWORK
FOR EDGE COMPUTING

In this section, we describe the main components
of a novel scheduling framework, depicted in Fig.5,
for latency-sensitive services in Edge computing.

4.1 System Overview

A cloud provider extends the cloud infrastructure with
a set of edge nodes deployed at the edge of the net-
work. These nodes are geographically distributed ac-
cording to the model described in (Hu et al., 2015), in
proximity of multi Radio Access Technology (RAT)
base stations (BSs), which provide access to the core
network to both user equipment and edge nodes. We
assume that each node is a micro data center that,
leveraging on virtualization technologies, grants ac-
cess to its resources by means of virtual machines
(VMs). Therefore, each node defines a virtualized
environment that allows the deployment of a service
instance within an individual VM. Since different ser-
vices have different computing requirements, in this
scenario we assume that a node can provide different

Figure 3: Cloud based solution for live streaming services

Figure 4: Delivery networks for streaming media contents

type of VMs. To provide edge services, the applica-
tion service provider (ASP) requests to a provider the
instantiation of a service in a VM compatible with the
service requirements. Since in our work we consider
only latency-sensitive services, the main service re-
quirement the provider has to guarantee is the service
response time, that is, the time elapsed from a user
sending a request and receiving a reply. In this sce-
nario, the network delay and the processing time are
the main factors that affect this metric. The former
refers to time necessary to a user request from the user
device to reach the edge node of the service and it is
determined by user-node physical distance, queuing
and processing delay of each hop in the network route
and the route’s available bandwidth. The request pro-
cessing time is strictly related to the VM and service
specifications and refers to the time to elaborate a re-
quest. In this context with different VM and service
specifications, further analysis of computing perfor-
mance is needed to select a VM type that can optimize
this metric.

Our goal is to design a scheduling framework that
takes into account the edge computing characteris-
tics to maximize the service quality experienced by
end users of a latency-sensitive application. To that
end, we defined a scheduling framework, described
in Alg.1, that first evaluates both network and compu-
tational capabilities of edge nodes for each incoming
service s, by calculating a quality score denoting the
eligibility of that VM type to host s; and then sched-
ules the services while maximizing the total overall
quality score of the chosen VMs optimizing the ser-
vice quality for the end users.

4.2 VM Evaluation

4.2.1 Low-latency path detection

Predicting network delay between users and edge
nodes provides useful insights to understand if a given
node can meet the network delay requirements of the
service to be scheduled, and at runtime to select the
communication routes that minimize the delay. Since

several monitoring techniques are available for the
network latency estimation, for example, by send-
ing probes between nodes and then measuring the la-
tency (i.e., active monitoring) or capturing informa-
tion about network paths directly from the network
devices (i.e., passive monitoring) (Yu et al., 2015),
we assume that network delays between edge nodes
can be measured and we use them in our scheduling
approach.

We model our edge network as a weighted graph
were each node denotes a edge data center in the
network, the link between two nodes represents the
actual connection between data centers and the link
weight describes the estimated network latency be-
tween them. We assume, then, that each user connects
to the closest BS and we group together users con-
necting to the same BS (line 2). Therefore, for each
user group g we detect the lowest latency path from
g to a every node n applying the Dijkstra algorithm
on the graph modelling our network, considering as
source node the node representing the edge data cen-
ter co-located with the BS of the group (line 5). This
set of low latency paths will be used for the VM eval-
uation process described in the next section.

4.2.2 Network and resource evaluation

To identify the most suitable VM to a given service,
we defined an evaluation process which computes,
for each type of VM, a quality score qv combining
connectivity qn,l , bandwidth qn,bw and resource qv,res
scores.

The connectivity score qn,l ∈ [0,1] assesses the
quality of the connectivity of a VM v by evaluating the
quality of the network routes connecting user groups
to the node n running v. The input data for this pro-
cess is the set of low-latency paths computed in Sec.
4.2.1. Therefore, for each network path connecting
a given user group g to the n, we evaluate the de-
lay according to the network delay requirements by
computing a quality score qn,l,g ∈ [0,1] using a utility
function previously defined by the provider (line 7).
The output of this path-based evaluation process is a
set of quality scores {qn,l,g1 ,qn,l,g2 , . . . ,qn,l,gn}, which
will be used to compute the connectivity final score
ql,n as the mean value of these scores weighted by the
number of users belonging to each group (line 9).

The bandwidth score qn,bw ∈ [0,1] assesses the
available bandwidth of the node n running the given
VM v. The available bandwidth on paths connecting
the users to n represents one of the main factors affect-
ing the overall service quality, as already motivated in
Sec.3, therefore information about the node capacity
can improve the service scheduling. We compute a
per path bandwidth score qn,bw,g ∈ [0,1], assessing the

Figure 5: Scheduling framework

quality of the bandwidth of each low latency route in
input (line 8). Similarly to the latency evaluation pro-
cess, we compute the final bandwidth quality score
qn,bw as the average of the single path quality scores
qn,bw,gi weighted by the number of users in each group
(line 10).

The VM resource evaluation is carried out by mea-
suring the service load that a given VM type v can
handle and the expected overall service load. Indeed,
for latency sensitive applications, underestimating the
computational resource necessary for executing the
service may increase considerably the service pro-
cessing time and the overall end-to-end response time.
Our approach, then, evaluates the computational re-
sources of a VM v computing a score qv,res ∈ [0,1]
by means of a utility function defined by the provider,
comparing the number of user requests that v can han-
dle w̃ with the overall number of requests expected w
(line 12).

Finally, the overall quality score of a given VM
type qv ∈ [0,1] is calculated as the harmonic mean of
connectivity, bandwidth and resource quality scores
(line 13). Despite the fact that the harmonic mean be-
haves as the arithmetic mean by giving equal weight
to both scores when they are similar, it favours the
smaller value when the gap between them increases.
This ensures that VMs with a very high and a very low
score are penalized, which emphasises the need of
sufficient network and computational resources. The
evaluation output is the set Q = {qv1 , . . . ,qvk} of VM
type quality scores that will be used by the scheduler
for service deployment (line 14).

4.3 Scheduling Approach

Given the set s∈ S of services, the provider schedules
each service instance on the VM type v ∈ V which
can guarantee an enhanced end user service quality.
We compute for each v a quality score qs,v using the
approach described in Sec.4.2.2, which is based on
the VM computing specifications and the network ca-
pabilities of the node hosting that VM. Then, the ser-
vice instances are scheduled to maximize the over-

all quality of the selected VMs, guaranteeing an en-
hanced service quality to end users.

We model the optimisation problem as a binary
integer linear programming problem as reported in
formulation below. Binary variables xs,v model the
placement of a service s on the VM type v, and as-
sume value 1 only when the service is actually sched-
uled on that VM. The coefficients are the VM quality
scores computed by the VM evaluation process previ-
ously described, which measures the suitability of the
VM type v in hosting the service s. The cost function
(I) aims to maximize the quality of the final schedul-
ing, assigning at each service s the most suitable VM.

maximize
x̄ ∑

s∈S
∑

v∈V
qs,vxs,v (I)

s. to ∑
v∈V

xs,v = 1 ∀s (II)

∑
a∈S

xs,v = kv ∀v ∈ Vn (III)

where

xs,v =

{
1 if s is scheduled on v
0 otherwise

Furthermore, we assume that each service has to
be scheduled on a single VM, as expressed in (II), and
that the number of times a VM type is assigned to new
services cannot exceed the number kv of available VM
instances, defined in (III).

5 VALIDATION OF OUR
APPROACH

In this section we present the experiments we car-
ried out to analyse the effectiveness of the proposed
framework in terms of service quality experienced by
the end users.

5.1 Experimental Setup

The experiments evaluate how different deployment
solutions affect the live video streaming service time

Algorithm 1: Latency-Sensitive Scheduling
Data: Service s to be scheduled
Data: Latency constraint t requested by the service

provider
Data: Users’ locations U = {u1,u2, . . . ,um}
Data: Nodes N = {n1,n2, . . . ,nk}
Data: Nodes’ location L = {l1, l2, . . . , lk}
Data: VM types V M = {vi,1,vi,2, . . . ,vi,q,∀i ∈ N}
Data: Array Q of quality scores for each VM

v ∈V M
Result: The vms scheduled for s.

1 begin
2 Define a set of users’ groups

G = {gi, |u j− li|< ε ∀u j ∈U,∀li ∈ L};
3 forall the n ∈ N do
4 forall the g ∈ G do
5 Estimate the network path pg,n with the

lowest latency t̃g,n between g and n;
6 Estimate the available bandwidth b̃wg,n

between users in g and the node n and
the required bandwidth bwg on pg,n;

7 Compute the latency score
qn,l,g = LatencyScore(t, t̃g,n);

8 Compute the bandwidth score
qn,bw,g = BandwidthScore(bwg, b̃wg,n);

9 qn,l =
∑

n
i=1 |gi|qn,l,gi
∑

n
i=1 |gi| ;

10 qn,bw =
∑

n
i=1 |gi|qn,bw,gi

∑
n
i=1 |gi| ;

11 forall the v ∈ n do
12 qv,res = ComputingScore(w, w̃v);
13 Compute the qv quality score

Q[qv]= 3
1

qv,res
+ 1

qn,l
+ 1

qn,bw

14 vms = Scheduler(Q);
15 return vms;

experienced by end users and analyse the impact on
its components, namely the network delay and the re-
quest processing time, with different number of users
joining the video stream in input. A comprehensive
description of the different scenarios considered in
our experiments is provided in Sec.5.2. We simu-
lated these scenarios using the EdgeCloudSim sim-
ulator (Sonmez et al., 2017). This simulator extends
the CloudSim toolkit (Calheiros et al., 2011) provid-
ing extra functionalities granting the modelling of net-
working resources and edge nodes, allowing a accu-
rate simulation of real edge infrastructures. The re-
sults obtained, not only show the benefit of the edge
platform in terms service time, but denote the need of

a edge-specific scheduling solution to obtain optimal
results.

5.2 Scenarios

We defined a set of simulation scenarios where we
analysed the impact of different deployment solutions
and scheduling policies on the service quality expe-
rienced by end users, in the context of live video
streaming services. In the remainder of this section
we provide a detailed presentation of the different net-
work designs and scheduling approaches in each sce-
nario devised.

Cloud. We consider a centralized deployment solu-
tion where both video processing and content distri-
bution processes are carried out on a cloud data center.
Essentially, given an incoming video to be streamed,
all the encoding/transcoding operations are executed
on a cloud data center. User requests to access the live
stream are also directly forwarded to the cloud server
responsible of stream distribution.

We modelled cloud resources as set of infinite
VM instances whose specifications are taken from the
Amazon m2.4xlarge and are reported in Tab. 1. The
users-data center connection has been defined as a
single link, whose capacity has been fixed at 1000
Mbps, representing the aggregation of single links
connecting user access BSs to the cloud. We defined
also a communication delay δu,c = 0.09, which mod-
els the delay related to the queuing and processing op-
erations and the physical distance characterizing the
network route between the user u and the cloud data
center c. This value has been estimated by averaging
latency of ICMP requests between hosts in Europe
and the Amazon Web Service instances in the same
time zone.

Content delivery network (CDN) We defined a
two-tier network architecture, characterized by an ori-
gin server in a massive cloud data-center and 10 ge-
ographically distributed replica servers. In this sce-
nario the encoding/transcoding operations are exe-
cuted in the cloud servers, while the content is dis-
tributed among the replica nodes. Users are randomly
distributed in proximity of all replica nodes and the
content distribution follows the schema designed in
(Pathan and Buyya, 2007). Therefore, a user request
is first redirected to the closest replica server and then,
if the content is already cached there, it is directly
returned. Otherwise, the request is forwarded to the
cloud server to fetch the content.

In this scenario origin and replica servers have
different purposes and then different hardware con-
figurations. We assumed that CDN (replica) nodes
are small data centers located only in strategic points,

Algorithm 2: FIXED provisioning algorithm
Data: Set of QoS requirements offered by the ASP:

S = {QoS(x),x≥ 0}
Data: Estimated mean inter-arrival times: 1

λ

Data: Estimated mean requests durations: 1
µ

Result: Number of VMs to acquire: V
1 begin
2 calculate the smallest number of V such that

λ

V µ ≤ 1;

3 t = min(QoS(x)),QoS(x) ∈ S;
4 P(w(ri)> t) = 1;
5 ρ = λ

V µ ;

6 while P(w(ri)> t)> p do
7 calculate ΠW =

(V ρ)V

V ! ((1−ρ)∑
V−1
n=0

(V ρ)n

n! +
(V ρ)V

V !)(−1);
8 calculate P(w(ri)> t) = ΠW e(−V µ(1−ρ))t

;
9 if P(w(ri)> t)> p then

10 V =V +1

11 return V

such as ISP point of presences (PoPs) or at inter-
net exchange points (IXPs). CDN servers’ access
bandwidths are distributed as a Pareto distribution
with mean value µ = 500 and each connection user-
server is characterized by communication delay δv,s =
0.013s. Similar to the cloud scenario, δv,s measures
the expected delay due to the physical characteris-
tics (e.g., number of hops and distance) of the route
between the host and the closest CDN server. We
modelled the connection between CDN servers and
the cloud origin server as a high capacity link with
an average bandwidth of µ = 750Mbps, since we as-
sumed that they are directly connected to the ISP
backbone. We also defined a link communication de-
lay as δe,c = 0.03s, modelling the delay along the path
from the CDN and the origin server based on the num-
ber of hops and the physical distance between them.
Moreover, since the main purpose of CDN networks
is to deliver content, the VM instances used in this
scenario are storage optimized. Therefore we used the
Amazon i3.large specifications, as reported in Tab.1.

Edge In this scenario, according to the edge-based
deployment solution described in Sec.3 the service is
entirely deployed on the edge nodes. Therefore, both
encoding/transcoding and distribution operations are
executed on the edge nodes, whereas the cloud has
only management functionalities.

The designed network infrastructure is composed
of 20 edge nodes, each co-locate with a BS. The com-

puting power of each node is rather limited. Each
node provides 2 types of VMs, namely the Ama-
zon m1.large and m1.xlarge instance types, but, due
to limited physical resources, only 10 instances that
can actually instantiated on each node. The access
bandwidth of each edge node has been modelled in-
stead as a Pareto distribution with average value µ =
375Mbps. In this scenario we also assume that the
distance between edge nodes is small, in the order of
20km, allowing the deployment of high speed inter-
node connections through either dedicated links or
single-hop connections. Thus, we modelled the inter-
node bandwidth whose capacity is distributed also as
a Pareto distribution with mean value µ = 400Mbps.
The communication delay between the nodes i and j
has been modelled, instead, by mean of a uniform dis-
tribution U[0.006,0.009].

In this scenario, we assume that users can ac-
cess the stream video with 3 different type of de-
vices, namely smartphone, laptop and tablet. There-
fore, according to the edge-based service deploy-
ment described in Sec.3, we assume that 3 differ-
ent and lightweight streaming engines (i.e., packages
responsible of encoding/transcoding operations and
content distribution) have to be deployed, each one
for a specific device. Each instance is responsible
for transcoding the video input into multiple bit rates
and resolutions suitable for a given device. We used
two different approaches for the scheduling of the
instances, that is Cloud-based and Edge-based, de-
scribed below.

In the Edge-based scenario, we schedule the ser-
vices using the approach presented in Sec. 4.3. For
the VM evaluation process, described in Sec.4.2.2,
we defined three utility functions as in Eq.1, Eq.2 and
Eq.3 for the evaluation of the network delay, the avail-
able bandwidth and VM resource respectively.

uv,δ(δg,v, δ̃) = S
(

1−
δg,v

δ̃

)
(1)

uv,B(Bg,v, B̃) = S
(

Bg,v

B̃
−1

)
(2)

uv,RPS(RPSv,W̃) = S
(

RPSv

W̃
−1

)
(3)

For the evaluation of the network route delay between
a user group g and a VM v, we compute a utility
score using a sigmoid function S, that takes in in-
put the route delay δg,v and the delay requirement
δ̃ = 50ms. Therefore, the utility function in Eq. 1
evaluates the margin between the actual delay δg,v

and the requirements δ̃ returning a score as close to
1 as the current delay is significantly lower than the
requirements. Otherwise, low values close to 0 are

returned. Bandwidth and resource evaluation follow
the same approach defined for the delay evaluation.
Essentially, given the predicted available bandwidth
Bg,v on the network route from g to v the utility func-
tion returns a value as close to 1 as the value of Bg,v is
higher then the needed bandwidth B̃ due to the num-
ber of users in g. The resource evaluation is achieved,
instead, by comparing the computing capability of v
expressed in terms of request per second RPS with the
expected number of requests W̃ generated by the ex-
pected workload. Finally, the scheduling is defined by
the scheduling approach in Sec.4.3.

In the Cloud-based approach, instead, we adopted
a cloud scheduling approach (Duong et al., 2012) that
estimates the number of streaming engines instances
needed to minimize the user waiting time. This ap-
proach aims to minimize the processing time deploy-
ing a number of instances based on the expected
workload. The Alg. 2 shows the pseudo-code of their
approach. They define a M/M/V5 queuing model to
determine the number of VMs to be instantiated in
advance to guarantee a user waiting time compliant
with the requirements. Three inputs are required: (i)
the estimated mean inter-arrival time of requests 1/λ,
(ii) the estimated mean duration of requests 1/µ and
(iii) and the target probability p that a request has to
wait more than its QoS requirement. The first step
of the algorithm (line 2) computes the initial number
of VMs V , such that the system utilization is lower
than one. Then, the smallest waiting time t to be
guaranteed by the service provider is determined (line
3). Afterwards, the algorithm updates the number
of VMs to be instantiated until the probability that
a new service request w(ri) has to wait more than t
(P(w(ri) > t)) is lower than the threshold defined by
p. Finally, for each streaming engine type the number
of replica is computed and then randomly distributed
among the edge nodes.

Similarly to the CDN scenario, also in this sce-
nario, users are randomly spread in proximity of all
edge nodes. Therefore, a user request is first sent to
the BS co-located to the closest edge node and then
forwarded to the node containing the VM which hosts
the encoder related to the type of device user adopted
to access the video stream.

5.3 Experimental results

The results in Fig.6(a) show that deploying a service
on the edge allows to achieve a considerable network
delay reduction with respect to all the others deploy-
ment solutions. Highest reduction is around 4.5-fold
with respect to cloud, and lowest is more than 2-fold
with respect to CDN. Moreover, this network delay

reduction is not guaranteed by only the platform itself
and a suitable service scheduling algorithm is neces-
sary as shown in Fig.7 (a). Indeed, the adoption of
scheduling algorithms that do not take into account
the joint information of network conditions, user re-
quirements and workload only partially exploit the
advantages introduced by the edge infrastructure, re-
sulting in suboptimal results. Additionally, process-
ing time represents another critical factor for the edge
platform, as depicted in Fig.6 (b) and in Fig.7 (b). The
values plotted represent the time spent by the stream-
ing engines to package the video content to be deliv-
ered. These results show how in the edge scenario we
obtain the highest processing time due to the limited
computational resources provided by the edge nodes.
Obviously the processing time on the cloud scenario
is the lowest among the three due to the high com-
puting power characterizing cloud resources. In the
CDN scenario, instead, we obtain smaller values then
the edge scenario, since distributing the requests on
the multiple replica server avoids the server overload-
ing. Moreover, the limited edge node resources not
only already provide the highest processing time, but
they may become the system bottleneck, as the load
increases. Edge results in Fig.6 (b) and Fig.7 (b) de-
scribing the processing time obtained using our ap-
proach, denote this increasing trend according to the
growth of the number of input devices. Essentially, in
our approach where each streaming engine instance
has to process all the incoming requests from the asso-
ciated user device, we experience a faster raise of the
processing time. Therefore, to reduce this high pro-
cessing time in the edge scenario, provider can hor-
izontally/vertically scale the servers in the edge data
centers or create new edge data centers in the over-
loaded locations. Results in Fig.7 (b) confirm this
assumption showing that predicting in advance, the
number of VM instances for each streaming engine
enhances the performance, reducing the average pro-
cessing time needed to elaborate each user request.
However, due to the significant network delay reduc-
tion provided by the edge-based solution, higher pro-
cessing time does not affect the overall service time, if
the processing capacity of the servers is not saturated,
as depicted in Fig.6 (c) and in Fig.7 (c). For very high
number of users, instead, higher processing time of
edge introduces a system bottleneck that considerably
affects the final service time experienced by end users
(Fig.7 (c)). Nevertheless, results in Fig.7 (c) confirm
the need for scheduling solutions that take edge spe-
cific features into account and for an infrastructure
with processing capacity compatible with number of
users in the edge data centers to obtain good perfor-
mance in edge scenario.

Table 1: Virtual machines specifications

m1.large m1.xlarge m2.4xlarge i3.large
CPUs 4 8 26 2
CPU MIPS 2400 4800 20000 2400
RAM(GB) 8 16 70 15
Storage(GB) 2x420 4x420 2x840 unlimited
Price (USD/h) 0.17 0.35 0.98 0.15

(a) (b) (c)
Figure 6: Average network delay (a) average processing time (b) and average service time (c) experienced by end users in the
scenarios described in Sec. 5.1

(a) (b) (c)
Figure 7: Comparison of the average network delay (a) average processing time (b) and average service time (c) in the edge
scenario using a cloud scheduler and the edge scheduler we developed.

6 CONCLUSIONS

Edge Computing is a new computing paradigm
which allows the efficient deployment of latency-
sensitive services in order to meet the strict require-
ments characterizing these services. However, an ef-
ficient service scheduling within the edge nodes is vi-
tal to fulfil the requirements. Therefore, in this work
we focus on the edge service scheduling problem and
propose a service-driven approach that aims to maxi-
mize the service quality experienced by end users by

deploying services on the most suitable VMs in terms
of computational and network resources.

We propose a two stages score-based algorithm
that first evaluates the eligibility of each available VM
type to host a given service, assigning to each VM
type a quality score, and then schedules the services in
order to maximize the total score of the chosen VMs,
guaranteeing higher service quality for end users.

We evaluate the performance of different deploy-
ment solutions, namely edge, CDN, and cloud, for
latency-sensitive applications. The results suggest

that edge is the best solution in this context. Then,
to validate our framework, we compare the average
response time, processing time and network delay ex-
perienced by the users of our approach with a related
work, where our solution showed a much better per-
formance. It is also clear that, promised benefits of
edge computing can only be achieved when effective
scheduling algorithms that consider its peculiar fea-
tures are implemented.

We believe our work will bring more research and
industry attention to this challenge and leverage the
adoption of edge computing. As future work, we plan
to enhance our algorithm by decentralizing the opti-
mization, adding another decision output for the num-
ber of instances of services, and taking vertical and
horizontal scaling into consideration.

7 ACKNOWLEDGEMENTS

This work has been supported by the Haley project
(Holistic Energy Efficient Hybrid Clouds) as part of
the TU Vienna Distinguished Young Scientist Award
2011, by the Rucon project (Runtime Control in Multi
Clouds), FWF Y 904 START-Programm 2015, and
by the Italian National Interuniversity Consortium for
Informatics (CINI)

REFERENCES

Aazam, M. and Huh, E.-N. (2015). Fog computing mi-
cro datacenter based dynamic resource estimation and
pricing model for iot. In Advanced Information Net-
working and Applications (AINA), 2015 IEEE 29th In-
ternational Conference on, pages 687–694. IEEE.

Aral, A. and Ovatman, T. (2016). Network-aware em-
bedding of virtual machine clusters onto federated
cloud infrastructure. Journal of Systems and Software,
120:89–104.

Bilal, K. and Erbad, A. (2017). Edge computing for inter-
active media and video streaming. In Fog and Mobile
Edge Computing (FMEC), 2017 Second International
Conference on, pages 68–73. IEEE.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose,
C. A., and Buyya, R. (2011). Cloudsim: a toolkit for
modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algo-
rithms. Software: Practice and experience, 41(1).

Dobrian, F., Sekar, V., Awan, A., Stoica, I., Joseph, D., Gan-
jam, A., Zhan, J., and Zhang, H. (2011). Understand-
ing the impact of video quality on user engagement. In
ACM SIGCOMM Computer Communication Review,
volume 41, pages 362–373. ACM.

Duong, T. N. B., Li, X., Goh, R. S. M., Tang, X., and
Cai, W. (2012). Qos-aware revenue-cost optimization

for latency-sensitive services in iaas clouds. In Dis-
tributed Simulation and Real Time Applications (DS-
RT), 2012 IEEE/ACM 16th International Symposium
on, pages 11–18. IEEE.

Guo, X., Singh, R., Zhao, T., and Niu, Z. (2016). An index
based task assignment policy for achieving optimal
power-delay tradeoff in edge cloud systems. In Com-
munications (ICC), 2016 IEEE International Confer-
ence on, pages 1–7. IEEE.

Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., and Young,
V. (2015). Mobile edge computing—a key technology
towards 5g. ETSI White Paper, 11(11):1–16.

Mao, Y., Zhang, J., and Letaief, K. B. (2016). Dynamic
computation offloading for mobile-edge computing
with energy harvesting devices. IEEE Journal on Se-
lected Areas in Communications, 34(12):3590–3605.

Papagianni, C., Leivadeas, A., Papavassiliou, S., Maglaris,
V., Cervello-Pastor, C., and Monje, A. (2013). On the
optimal allocation of virtual resources in cloud com-
puting networks. IEEE Transactions on Computers,
62(6):1060–1071.

Pathan, A.-M. K. and Buyya, R. (2007). A taxonomy and
survey of content delivery networks. Grid Comput-
ing and Distributed Systems Laboratory, University of
Melbourne, Technical Report, 4.

Piao, J. T. and Yan, J. (2010). A network-aware vir-
tual machine placement and migration approach in
cloud computing. In Grid and Cooperative Com-
puting (GCC), 2010 9th International Conference on,
pages 87–92. IEEE.

Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge
computing: Vision and challenges. IEEE Internet of
Things Journal, 3(5):637–646.

Skarlat, O., Nardelli, M., Schulte, S., and Dustdar, S.
(2017). Towards qos-aware fog service placement. In
Fog and Edge Computing (ICFEC), 2017 IEEE 1st In-
ternational Conference on, pages 89–96. IEEE.

Sonmez, C., Ozgovde, A., and Ersoy, C. (2017). Edge-
cloudsim: An environment for performance evalua-
tion of edge computing systems. In Fog and Mobile
Edge Computing (FMEC), 2017 Second International
Conference on, pages 39–44. IEEE.

Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., and
Wang, W. (2017). A survey on mobile edge networks:
Convergence of computing, caching and communica-
tions. IEEE Access, 5:6757–6779.

Yu, C., Lumezanu, C., Sharma, A., Xu, Q., Jiang, G., and
Madhyastha, H. V. (2015). Software-defined latency
monitoring in data center networks. In International
Conference on Passive and Active Network Measure-
ment, pages 360–372. Springer.

Zeng, L., Veeravalli, B., and Wei, Q. (2014). Space4time:
Optimization latency-sensitive content service in
cloud. Journal of Network and Computer Applica-
tions, 41:358–368.

Zhao, T., Zhou, S., Guo, X., Zhao, Y., and Niu, Z. (2015). A
cooperative scheduling scheme of local cloud and in-
ternet cloud for delay-aware mobile cloud computing.
In Globecom Workshops (GC Wkshps), 2015 IEEE,
pages 1–6. IEEE.

